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OVSYANNIKOV PLANE VORTEX: THE EQUATIONS OF THE SUBMODEL

UDC 533S. V. Golovin

A submodel of the equations of ideal magnetohydrodynamics is constructed that generalizes the classi-
cal motion of an ideal continuous medium with plane waves. It is shown that, in contrast to classical
motion, in this submodel the velocity and magnetic-field vectors can change direction in a plane or-
thogonal to a distinguished spatial direction. The submodel is described by a system of equations with
two independent variables and a finite relation specifying the orientation of the vector fields in space.
The solutions of the submodel define substantially spatial processes and singularities in the motion
of continuous media which cannot be studied in the classical one-dimensional formulation.

Key words: ideal magnetohydrodynamics, partially invariant solutions, overdetermined systems
of differential equations, singularities in the motion of a continuous medium.

INTRODUCTION

In the classical one-dimensional motion of an ideal continuous medium, functions depend only on two vari-
ables — time t and the Cartesian spatial coordinate x. Particle motion is admitted in all directions (the velocity
vector has three components), but the main perturbations (compression and rarefaction waves, strong and weak
discontinuities, etc.) occur only along the spatial Ox axis. The velocity components and thermodynamic functions
in the planes x = const are constant and can vary only from one plane to another. This fairly simple solution,
called plane-wave motion, contains a large body of information on the motion of continuous media. However, this
simplification is unsuitable in the case of substantially three-dimensional processes in fluids, which can be important
for a correct description of the motion.

In the present work, it is proposed to generalize the classical solution as follows. The velocity vector is split
into two components: a component parallel to the Ox axis and a component orthogonal to it. It is assumed that the
lengths of both components and thermodynamic functions depend only on the variables t and x (which corresponds
to the classical solution). The generalization of the classical solution consists of the fact that the angle of rotation
of the particle velocity around the Ox axis is assumed to depend on all independent variables.

The examined generalization of the classical one-dimensional motion follows from the symmetry properties
of mathematical models [1, 2]. In terms of the group analysis of differential equations, the classical solution is
invariant under the group of translations along the Oy and Oz axes whereas the generalized solution is partially
invariant under group of plane isometries (translations along the Oy and Oz axes, and rotations around the Ox

axis). This class of solutions for the equations of an ideal continuous medium is substantial and is described by
a closed invariant system of equations with two independent variables, which, in a particular case, leads to the
classical equations of one-dimensional plane-wave motion. The no invariant function is determined for the solutions
of the invariant system from a finite (nondifferential) relation containing a functional arbitrariness. For this relation
there is a clear geometrical interpretation which allows one to construct motion of the required type by selecting
the arbitrary function included in the relation.
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It should be noted that the solution of the equations of an ideal continuous medium called the singular vortex
or the Ovsyannikov vortex [3–11], which has now been extensively studied, is a similar generalization of the classical
one-dimensional motion with spherical waves. In this solution, the moduli of the velocity components which are
normal and tangent to spheres r = const are invariant quantities, i.e., they depend only on time t and the distance
to the coordinate origin r, whereas the angle of rotation of the velocity vector around the radial direction Or is a
noninvariant quantity and depends on all independent variables. This solution also has a group nature, i.e., it is
partially invariant under the admitted group of sphere isometries (rotations in three-dimensional space).

The examined solution for the equations of ideal gas dynamics was first obtained in [12], but it has not been
analyzed in detail from the point of view of the physical content. In the present work, we study the equations of
ideal magnetohydrodynamics, which, for zero magnetic field (H = 0) and constant density (ρ = const), lead to
generalized one-dimensional motion for ideal fluid dynamics. A method for obtaining the equations of the submodel
and a geometrical interpretation of the implicit finite relations for the noninvariant function included in the solution
are discussed. The physical properties of the motion of a continuous medium described by the solution are studied
in [13].

1. CONSTRUCTION OF THE SUBMODEL

1.1. Representation of the Solution. The initial system of equations of ideal magnetohydrodynamics
(the stress is reduced to pressure, zero thermal conductivity, infinite electrical conductivity) is written as follows [14]:

Dρ + ρ div u = 0; (1)

Du + ρ−1∇p + ρ−1H × rotH = 0; (2)

Dp + A(p, ρ) div u = 0; (3)

DH + H div u − (H · ∇)u = 0; (4)

div H = 0, D = ∂t + u · ∇, (5)

where u = (u, v, w) is the velocity vector, H = (H, K, L) is the magnetic-field intensity vector, and p and ρ are the
pressure and density. The equation of state p = F (S, ρ) with entropy S is valid. The function A(p, ρ) is given by
the equation of state A = ρ (∂F/∂ρ). All functions depend on time t and the Cartesian coordinates x = (x, y, z).

For an arbitrary equation of state p = F (S, ρ), Eqs. (1)–(5) admit a 11-dimensional Lie group G11 of point
transformations, which is an extension of the 10-dimensional Galilean group to the homothety transformation
[15, 16]. The optimal system of subgroups ΘG11 is constructed in [17, 18], and in the final form in [19]. An
analysis of the system ΘG11 shows that the partially invariant solution described here is generated by the subgroup
G3.13 ⊂ G11 with the Lie algebra L3.13 of infinitesimal generators {∂y, ∂z, z ∂y − y ∂z + w ∂v − v ∂w + L ∂K −K ∂L}
(the numbering of subalgebras is the same as in [19]).

Indeed, the group G3.13 is generated by shifts along the Oy and Oz axes with simultaneous rotation around
the first coordinate axis in the spaces R

3(x), R
3(u), and R

3(H). In the space R
4(t, x)×R

8(u, H , p, ρ), the invariants
of this group of transformations have the form

t, x, u, V =
√

v2 + w2, p, ρ, H, N =
√

K2 + L2, vK + wL. (6)

The last invariant can be interpreted as the angle σ between the projections of the vectors u and H onto the plane
Oyz (Fig. 1). General theory for partially invariant solutions is presented in [1]. A representation for the partially
invariant solution can be obtained by specifying functional dependences between the invariants (6). In particular,
for the solution of rank 2 (two invariant independent variables) and defect 1 (one noninvariant function) we obtain
the following representation of the solution:

u = U(t, x), H = H(t, x),

v = V (t, x) cosω(t, x, y, z), K = N(t, x) cos(ω(t, x, y, z) + σ(t, x)),

w = V (t, x) sin ω(t, x, y, z), L = N(t, x) sin(ω(t, x, y, z) + σ(t, x)),
p = p(t, x), ρ = ρ(t, x), S = S(t, x).

(7)
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Fig. 1. Representations of the velocity vectors u (a) and magnetic-field intensity H (b) in the
partially invariant solution.

The unique noninvariant function ω(t, x, y, z) (see Fig. 1) depends on all initial independent variables. The invariant
functions U , V , H , N , σ, p, and ρ are assumed to be dependent on the invariant variables t and x. The system
of equations for the invariant and noninvariant functions will be called the submodel of the initial model of ideal
magnetohydrodynamics.

1.2. Preliminary Analysis. Substitution of representation (7) into the continuity equation (1) allows one
to introduce a new invariant unknown function h(t, r) determined from the relation

D̃ρ + ρ(Ux + hV ) = 0. (8)

Here and below, the operator D̃ denotes the invariant part of the operator of differentiation along the trajectory:

D̃ = ∂t + U∂x.

The remaining part of the continuity equation (1) leads to the first equation for the noninvariant function ω:

sinω ωy − cosω ωz + h = 0. (9)

In addition, from the equations for the invariant functions, we obtain the first components of the momentum
equation (2), the induction equation (4), and the equation for pressure (3):

D̃U + ρ−1px + ρ−1NNx = 0; (10)

D̃H + hHV = 0; (11)

D̃p + A(p, ρ)(Ux + hV ) = 0. (12)

The remaining five equations of system (1)–(5) lead to an overdetermined system for the function ω. Forming
nondegenerate linear combinations of Eqs. (2) in projections onto the Oy and Oz axis, we have

ρV ωt +
(
ρUV − HN cosσ

)
ωx +

(
ρV 2 cosω − N2 cosσ cos (ω + σ)

)
ωy

+
(
ρV 2 sin ω − N2 cosσ sin (ω + σ)

)
ωz − H(Nx sin σ + N cosσσx) = 0; (13)

HN sinσ ωx + N2 sinσ cos (ω + σ)ωy + N2 sin σ sin (ω + σ)ωz

+ ρ D̃V + HN sin σ σx − HNx cosσ = 0. (14)

Similar manipulations with the remaining two induction equations (4) yield

Nωt + (NU − HV cosσ)ωx + V N sin σ sin (ω + σ)ωy

− V N sinσ cos (ω + σ)ωz + ND̃σ + HVx sin σ = 0; (15)
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HV sin σ ωx + NV cosσ sin (ω + σ)ωy − NV cosσ cos (ω + σ)ωz − D̃N + HVx cosσ − NUx = 0. (16)

Equation (5) is written as

N
(

sin (ω + σ)ωy − cos (ω + σ)ωz

)
− Hx = 0. (17)

We examine the compatibility of system (9), (13)–(17) for the noninvariant function ω, seeking solutions in
which the function ω is determined with a functional arbitrariness. According to the reduction theorem [1], if this
condition is not satisfied, the solution reduces to an invariant solution with respect to a certain two-dimensional
subalgebra of the initial algebra L3.13. In the algebra L3.13 there is only one two-dimensional subalgebra {∂y, ∂z}.
The corresponding invariant solution is the classical one-dimensional motion of plasma. Thus, the discarded solution
is already known.

1.3. Prohibition of Reduction. To prohibit reduction of the solution, it is necessary to rule out the
situation in which all derivatives of the noninvariant function ω can be expressed from system (9), (13)–(17). For
this, it is necessary to calculate the coefficient matrix for the derivatives of the function ω and to equate the rank
minors to zero. As in the case of the spherical singular vortex [9], this is possible only if one of the following
conditions are satisfied:

1) H = 0;

2) N = 0;

3) V = 0;

4) σ = 0 or σ = π.

(18)

In this case, we assume that the inequalities H2 +N2 �= 0 and U2 +V 2 �= 0 are satisfied (in the case of no magnetic
field or in the state of magnetohydrodynamic equilibrium, the solution is irreducible). For case 4, we note that, by
definition (7), the functions V and N are nonnegative. However, the values σ = π and σ = 0 differ only in the
sign of the function N ; therefore, in the following consideration of case 4, we shall assume that the function V is
nonnegative and the function N can have an arbitrary sign.

According to classification (18), variants 2 and 3 correspond to a magnetic field parallel to the Ox axis and
the plasma velocity field. As in the case of the Ovsyannikov spherical vortex, these variants are contained in variant
4 (σ = 0). Indeed, the equality σ = 0 implies that the velocity vector and the magnetic-field intensity vector of
each particle are in one plane which is orthogonal to the coordinate plane Oyz. Then, the cases where the magnetic
field or the velocity field are parallel to the plane Oyz are degenerate variants of this more the general situation.
Below, case 4 will be considered as the basic one.

We note that the condition of irreducibility of the solution imposes a constraint on the arrangement of
the velocity and magnetic field vectors. Generally speaking, in classical one-dimensional plane-wave motion, such
constraints are absent. This implies that in the case of magnetohydrodynamics, solution (7) extends the classical
one-dimensional plane-wave solution only to the class of motions for which one of conditions (18) is satisfied. This
constraint of the class of solutions is due to the fact that the employed condition of reducibility of solutions is only a
sufficient one. This implies that different irreducible solutions can exist, which are not contained in the classification
(18) and completely fill the missing part of the extension of the classical solution. However, this missing part can
be trivial, i.e., if conditions (18) are satisfied, the unique lost solution is the classical one-dimensional solution.
Therefore, it is of interest to study the overdetermined system (9), (13)–(17) without using the assumption of
reduction prohibition. The above remarks refer only to the equations of magnetohydrodynamics since the latter
contain two vector fields — of the velocity and magnetic-field intensity. For the case of pure gas dynamics H ≡ 0,
three of the four conditions (18) are satisfied automatically; therefore the irreducibility property does not impose
additional constraints on the solution.

2. ANALYSIS OF THE SOLUTION

2.1. Case of a Plane Magnetic Field. We consider the case H = 0, where the magnetic-field vector is
parallel to the plane Oyz. In this case, the compatibility condition for Eqs. (9) and (17) is written as

(cos (ω + σ)ωy + sin (ω + σ)ωz)h = 0. (19)
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In the case h = 0, the determinant of the homogeneous system (9), (17) for ωy and ωz is sin σ, i.e., the solution
is nontrivial if σ = 0 or σ = π. The case h �= 0 leads to reduction, as follows from Eqs. (17) and (19). Thus, a
nontrivial solution exists only for σ = 0, i.e., according to classification (18), case 1 is contained in case 4.

Assuming that N �= 0, we study in greater detail the equations of the obtained submodel for H = h = σ = 0.
Equation (9) becomes homogeneous and has the form

sin ω ωy − cosω ωz = 0. (20)

Equation (13) leads to

ρV ωt + ρUV ωx + (ρV 2 − N2)(cosω ωy + sin ω ωz) = 0. (21)

Using (20), from Eq. (14), we obtain

D̃V = 0. (22)

Dividing (15) by the nonzero multiplier N , we have

D̃ω = 0. (23)

Simplifying Eq. (16) with the use of (20), we obtain

D̃N + NUx = 0.

Finally, Eq. (17) coincides with (20). Thus, in case of a magnetic field parallel to the plane Oyz, the examined class
of plasma motions is described by the following system of equations for the invariant functions:

D̃U + ρ−1px + ρ−1NNx = 0, D̃p + A(p, ρ)Ux = 0,

D̃ρ + ρUx = 0, D̃N + NUx = 0, D̃V = 0.
(24)

The last equation of system (24) is independent and can be solved separately. An integral of the equation for N is
the function N = N(ρ). Introducing the new functions P = p + (1/2)N(ρ)2 and A1 = A(p, ρ) + N(ρ)N ′(ρ), we
reduce Eqs. (24) to the equations of one-dimensional gas dynamics:

D̃U + ρ−1Px = 0, D̃p + A1(p, ρ)Ux = 0, D̃ρ + ρUx = 0.

For the noninvariant function ω, we obtain system (20)–(23), which, for ρV 2 − N2 �= 0, implies that ωy =
ωz = 0, i.e., the solution is reduced to classical one-dimensional plane-wave motion. In the case ρ V 2 − N2 = 0,
in view of N = N(ρ), we obtain the function V = V (ρ), from which it follows that D̃ρ = 0, and, hence, Ux = 0.

Consequently, the functions V , N , p, and ρ are arbitrary functions of the variable x−
∫

U(t) dt. The first equation

of system (24) implies that U ′(t) = const. Thus, the following theorem is valid:
Theorem 1. In the case of a plane magnetic field H = 0, the examined class of solutions reduces to the

classical one-dimensional plane-wave solution or describes uniformly accelerated plasma motion in the Ox direction.
In the latter case, all required functions are constant in planes orthogonal to the Ox axis and moving at the same
acceleration along this axis.

2.2. Basic Case. We consider the case σ = 0. From a physical point of view, this case is equivalent to
plasma flow in which the velocity and magnetic-field vectors belong to a plane parallel to the directing vector of the
Ox axis. The invariant part of the solution is given by Eqs. (8) and (10)–(12). In addition, in view of (9), Eq. (14)
leads to

D̃V − ρ−1HNx = 0.

From equation (16), we obtain

D̃N + NUx − HVx + hNV = 0,

and Eq. (17) is written as

Hx + hN = 0. (25)

The noninvariant part of the solution is defined, in addition to (9), by the equations following from (13) and (15):

ρV ωt + (ρUV − HN)ωx + (ρV 2 − N2)(cosω ωy + sinω ωz) − HNσx = 0; (26)
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N ωt + (NU − HV )ωx = 0. (27)

Eliminating the derivative ωt from Eqs. (26) and (27), we obtain the classifying relation

(ρV 2 − N2)
(
Hωx + N(cosω ωy + sin ω ωz)

)
= 0. (28)

Let us consider the basic case where the second multiplier in relation (28) is equal to zero. The compatibility
conditions for Eqs. (9), (27), and (28) are written as

ND̃h − HV hx = 0, Hhx + h2N = 0.

Taking into account that, for h �= 0, there exists the integral

H = H0h, (29)

the equations of the submodel can be reduced to the equations

D̃ρ + ρ(Ux + hV ) = 0; (30)

D̃U + ρ−1px + ρ−1NNx = 0; (31)

D̃V − ρ−1H0hNx = 0; (32)

D̃p + A(p, ρ)(Ux + hV ) = 0; (33)

D̃N + NUx − H0hVx + hNV = 0; (34)

D̃h + V h2 = 0, H0hx + hN = 0. (35)

System (30)–(35) is overdetermined [similarly to the initial system of magnetohydrodynamics (1)–(5)]: it
contains seven equations for six required functions and is in involution. Indeed, the last two equations for the
function h imply the unique nontrivial compatibility condition for this system. Performing cross differentiation of
Eqs. (35), as the compatibility condition we obtain Eq. (34), which is already contained in the system. To formulate
the Cauchy problem for system (30)–(35), it is necessary to specify the functions ρ, U , V , p, and N of x at t = 0
and to fix a constant value of the function h in a certain plane x = const. In the case of ideal gas dynamics H ≡ 0,
overdetermination is absent. The second equation in (35) is satisfied identically; therefore, the initial data for h

are specified in the same manner as for the remaining functions: h(0, x) = h0(x). System (30)–(35) with the initial
data can be studied numerically or analytically or by using methods of group analysis of differential equations since
the group admitted by this system is nontrivial.

The equations for the noninvariant function are integrated, and the function ω is determined from the implicit
relation

F (y − τ cosω, z − τ sin ω) = 0, (36)

where τ = 1/h and F is an arbitrary smooth function. In the case of ideal gas dynamics H ≡ 0, Eq. (27) is satisfied
identically; therefore, in (36) the function F also depends arbitrarily on ξ: ξt + Uξx = 0. The result obtained is
formulated in the following theorem.

Theorem 2. In the basic case h �= 0, the invariant functions are found from the system of differential
equations (30)–(35). The noninvariant function ω is given by the finite relation (36) with an arbitrary smooth
function F .

2.3. Geometrical Construction of the Direction Field. A geometrical algorithm for finding the
solution of the implicit equation (36) in a certain fixed plane x = x0 at the time t = t0 is given below. Assuming
that in (36) the function F is fixed, we determine the curve γ = {(y, z): F (y, z) = 0} specified by formula (36)
for τ = 0. To determine the angle ω at an arbitrary point M = (y, z), it is necessary to construct a segment AM

of length τ such that A ∈ γ. The required angle ω is specified by the direction of the segment AM (Fig. 2). The
function ω is determined only at the points which are at a distance τ from the curve γ, and the remaining part
of the plane Oyz is not the domain of definition of the function ω. The boundaries of the domain of definition
of the function ω are τ -equidistant to γ. As x increases, the function τ varies as is specified by the solution of
Eqs. (30)–(35). According to this, the domain of definition of the function ω in the planes x = const also varies.
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Fig. 3. Direction field defined by Eq. (36) for F = z − sin y.

Thus, in each plane x = const, the domain of definition of the function ω [and, hence, of the entire solution (7)] is
a strip of width 2τ with the curve γ as the middle line. On the boundaries of the domain of definition of ω, the
corresponding direction field is orthogonal to the boundary. For the particular case F = z− sin y, the direction field
given by Eq. (36) is presented in Fig. 3.

Inside the domain of definition of the function ω is multiple-valued. Indeed, there can exist several segments
AM of the required length with A ∈ γ, each of which defines the branch of the function ω. By choosing one of
the branches, one can uniquely determine the function ω over the entire strip of definition. However, this function
is not always continuous. In the case of large τ , where the boundary equidistants of the strip of definition have
swallowtail singularities, discontinuities appear. In Fig. 4, it is shown that each branch of the function ω has a
discontinuity line inside or on the boundary of the swallowtail. As the curve γ we choose a sinusoid, and the curve
at the top of the figures is equidistant to γ, which is shifted for distance τ . The dashed curve shows a circle of
radius τ with center at the point M . Each point of intersection of the circle with the curve ω corresponds to a
branch of the function γ. If the point M is outside the swallowtail (Fig. 4a), at this point there are two branches of
the function ω. As the point M moves toward the boundaries of the swallowtail, both branches of the function ω

change continuously (Fig. 4b). Upon the intersection with the boundary, a new branch of the function ω appears
(Fig. 4c). This branch is split into two branches inside the swallowtail (Fig. 4d). Once the point M reaches the right
boundary, the two branches ω merge (Fig. 4e) and disappear when the point M leaves the swallowtail (Fig. 4f). It
is easy to see that the branches of the function ω on the right of the swallowtail differ from the branches on the left
of it. This means that, inside or on the boundary of the swallowtail, the function ω changes suddenly.

A swallowtail singularity does not appear for τ < min
x∈γ

R(x) [R(x) is the curvature radius of the curve γ

at the point x]; therefore, singularities can be eliminated by choosing solutions with a small τ or by fixing the
curve γ with a large curvature radius. The above singularity of the solution of the magnetohydrodynamic equations
takes the solution out of the class (7). The resulting strong discontinuity cannot be interpreted as a shock wave
because, on the discontinuity line, only the directions of the vector fields change and thermodynamic functions and
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Fig. 4. Behavior of the function ω in the vicinity of the swallowtail singularity: branches of the
function ω outside the swallowtail (a, b, and f), branches of the function ω on the boundaries of the
swallowtail (c and e), and branches of the solution inside the swallowtail, dashed curve is a circle
of radius τ with center at the point M (d).

the moduli of the velocity and magnetic-field vectors remain continuous. Using the rotational or Alfen discontinuity
[14, 20], which is characteristic of ideal magnetohydrodynamics, also does not allow one to explain the occurrence
of the discontinuity because the velocity and magnetic-field vectors rotate in a plane which is not tangent to the
discontinuity plane.

From a physical point of view, the occurrence of singularities on the boundary of the domain of definition
of the solution implies that the magnetic lines issuing from different points in the initial plane x = const intersect
each other. This occurs if the function τ increases along the magnetic line in such a manner that the τ -equidistants
to γ become nonsmooth. In the vicinity of the point of intersection, the solution leaves the class described. The
corresponding motion of continuous media should be described by the general equations of three-dimensional motion
or by a more general model, for example, with magnetic and kinematic viscosities taken into account, as in problems
of magnetic field line reconnection [21]. This nonlinear process is specific to the solution constructed and cannot be
implemented in the classical one-dimensional motion, in which all magnetic lines are parallel.

3. CASE H = 0

3.1. Equations of the Submodel. From the point of view of mechanics, the case h = 0 means that, in the
projection onto the plane x = const, the vector fields u and H are incompressible, i.e., they have zero divergence.
The noninvariant function ω for this case is found by using a different algorithm.

Thus, for h = 0, the integral (29) is absent; instead of it Eqs. (11) and (25) lead to

H = H0 = const.

Thus, the equations of the invariant subsystem reduce to the system

D̃ρ + ρUx = 0, D̃U + ρ−1px + ρ−1NNx = 0,

D̃V − ρ−1H0Nx = 0, D̃p + A(p, ρ)Ux = 0, D̃N + NUx − H0Vx = 0.
(37)

System (37) serves to determine the unknown functions U , V , N , p, and ρ. The noninvariant function ω is
determined from Eqs. (9), (27), and (28). To find its solution for N �= 0 and ρV 2 − N2 �= 0, we seek a dependence
ω = ω(t, x, y, z) in the implicit form Φ(t, x, y, z, ω) = 0, Φω �= 0. Then, the indicated system of equations is
equivalent to the system
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Fig. 5. Geometrical interpretation of the solution ω(t, x, j).

Φk = 0, Φt + UΦx + V Φj = 0, H0 Φx + NΦj = 0, (38)

where Ojk is the Cartesian coordinate system rotated through the angle ω around the coordinate origin:

j = y cosω + z sin ω, k = −y sin ω + z cosω.

Integrals of system (38) are ω and j − ϕ(t, x), where the function ϕ(t, x) satisfies the overdetermined system

ϕt + Uϕx = V, H0 ϕx = N. (39)

The compatibility condition for Eqs. (39) is the last equation of system (37). The differential 1-form

H0 dϕ = (H0V − NU) dt + N dx

is closed, and, hence, the function ϕ is found by integration in the form

ϕ(t, x) =

(t,x)∫

(t0,x0)

dϕ.

We note that the function ϕ is determined by its value at the initial point ϕ(t0, x0). In the case considered, the
noninvariant function ω is found in implicit form

j = f(ω) + ϕ(t, x) (40)

with an arbitrary smooth function f . The following theorem is valid.
Theorem 3. In the case h = 0, the invariant functions are determined by solving system (37), (39). The

noninvariant function ω is determined from the implicit equation (40).
3.2. Construction and Properties of the Direction Field. Let us consider a geometrical interpretation

of the solution ω(t, x, j) of the implicit finite equation (40). We fix the plane x = x0 and the time t = t0. To simplify
the calculations, we set ϕ(t0, x0) = 0. It is also assumed that, at a certain point M = (y, z) of the plane x = x0, the
quantity ω satisfying the implicit dependences (40) is specified. We consider the Cartesian coordinate system Ojk

rotated counterclockwise through the angle ω around the system Oyz (Fig. 5). By the construction, the j-coordinate
of the point M and the angle ω are linked by the relation j = f(ω), which is valid for all points of the plane with
the same coordinate j and an arbitrary coordinate k.

The point with the coordinate k = 0 will be called the base point for the chosen values of j and ω that
satisfy Eq. (40). The geometrical place of all base points for various j and ω will be called the base curve γ. In the
plane Oyz, the base curve γ is defined in the polar coordinates y = r cos θ and z = r sin θ by the equation r = f(θ).
Since the quantity j can have an arbitrary sign, negative values of the polar coordinate r are also admitted in the
construction of the curve γ.

Based on the above geometrical interpretation, it is possible to propose an algorithm for constructing the
direction field determined by the angle ω of deviation from the positive Oy direction. The angle ω is found by
solving the implicit equation (40). Under the assumption that the function f in Eq. (40) is specified, the base curve
γ can be constructed by the formula r = f(θ) in the polar coordinates in the plane Oyz. To find the angle ω at
the point M = (y, z) in the plane x = x0, it is necessary to construct a circle SM of diameter OM and to find the
points of intersection Ai of the circle SM with the curve γ (Fig. 6). For each point Ai, the direction of the vector
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Fig. 6. Geometry of the vector field corresponding to the point of intersection A1.

Fig. 7. Geometry of the vector field for negative value of the function f .
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Fig. 8. Construction of the boundary of the domain of definition of the function ω.

field at the point M coincides with the direction of the segment OAi. At all points of the straight line through the
segment AiM , the vector field has the same direction as that at the point M .

As noted above, the function f can take both negative and positive values. This implies that, in the
construction of the curve γ, the coordinate r can also take negative values. The negative values of f correspond to
the negative values of j. Thus, if the point of intersection of the auxiliary circle and the curve γ lies on the part
of the curve that corresponds to the negative function f , the corresponding vector field should have the opposite
direction. In Fig. 7, the curve γ is defined by the equation r = cos 2θ. The circle constructed on the diameter OM

with the point M = (3, 3) has two points of intersection with the curve γ (A and B). The point A lies on the
part of the curve that corresponds to the positive value of the function f ; therefore, it corresponds to the vector v1

codirected with the segment OA. The point B lies on the negative part of the arch γ; therefore, it corresponds to
the vector v2 directed opposite to the segment OB.

Let us calculate the boundaries of the domain of definition of the solution ω = ω(t, r, j) given by formula
(40). We assume that the curve γ is specified. The point M is on the boundary of the domain of existence of the
solution if the circle SM constructed on the diameter OM is in contact to the curve γ at a certain point A (Fig. 8).
We denote the radius-vector of the point M by m and assume that the curve γ is given in the parametric form
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x = x(s) with the parameter s ∈ Δ ⊂ R. It is obvious that m = x + αx⊥, where x⊥ · x = 0. In addition, from
the condition of contact between the circle and the curve γ, it follows that (m/2 − x) · ẋ = 0 (the point above the
symbol denotes differentiation with respect to s). Substitution of the expression for m from the first equality into
the second yields (αx⊥/2 − x/2) · ẋ = 0. From this, we obtain

α =
x · ẋ

x⊥ · ẋ .

Thus, the boundary of the domain of definition of the function ω has the parametrization

m = x +
x · ẋ

x⊥ · ẋ x⊥, x = x(s), s ∈ Δ ⊂ R,

and m does not depend on the choice of the sign x⊥. At the points of the boundary, the vector field has the
direction x orthogonal to the boundary:

ṁ · x = (ẋ + α̇x⊥ + αẋ⊥) · x = ẋ · x +
x · ẋ

x⊥ · ẋ ẋ⊥ · x = 0.

Because the relation x · x⊥ = 0 implies that ẋ · x⊥ = −x · ẋ⊥, the last expression vanishes.
As an example, we choose a circle y2 + z2 = R2 as the curve γ. The boundary of the domain of definition

of this vector field coincides with the circle γ because any its point x obeys the equality x · ẋ = 0. The required
vector field corresponding to the flow from the circular source is shown in Fig. 9. In the limit for R = 0 we obtain
the vector field corresponding to rotation around the coordinate origin.

CONCLUSIONS

For the equations of ideal magnetohydrodynamics, a partially invariant submodel generated by motion of a
plane was constructed and analyzed. The submodel is described by a system of equations with two independent
variables and a finite relation containing a functional arbitrariness. A geometrical algorithm for the solution of the
finite relation for the noninvariant function was proposed. It was shown that it is not always possible to choose
the branch of the noninvariant function that is unique and smooth over the entire domain of definition. For the
quantities included in the submodel, the range of values for which the solution can have singularities was determined.

This work was supported by the Russian Foundation of Basic Research (Grant No. 05-01-00080), Integration
Project of the Siberian Division of the Russian Academy of Sciences No. 2.15, and Council on Grants of the
President of the Russian Federation on the Support of Young Russian Scientists and Leading Scientific Schools
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